1. Construction shall comply with all local, state, and federal electrical codes and standards.
2. Coordinate with UNL utilities to allow any and all inspections before, during and after meter installation and circuiting is complete.
3. Coordinate with UNL project manager for required temporary power outages and for any anticipated loud work generating vibrations. Coordinate a minimum of three (3) days prior to such work.
4. Typically, solid core current transformers (CT's) will be installed vs. split core style CT's. Solid core CT's require temporary disconnection of existing conductors. Provide this work as req'd.
5. All exterior enclosure penetrations shall be water proofed.
6. Exact locations and placement of positions of CT's, and meter-in-a-box shall be reviewed and approved on a project-by-project basis.
7. As much as practical, meter-in-a-box and CT's shall be pre-wired off site to minimize power outage duration.
8. All conductors shall be solid core, #12AWG, copper, XHHW-2 type conductors. All new meter conductors shall have continuous colored jacketing matching color coding provided on this sheet.

GENERAL NOTES

1. Terminate voltage conductor on panel bussing. Add lugs as req'd.
3. CT furnished by UNL, installed by contractor. Position to minimize strain on secondary conductors as much as possible.
4. CT shorting block integral to CT. Shown for reference only.
5. Neatly train meter conductors inside panel and meter-in-a-box. Use zip ties as req'd. Ensure proper slack is provided.
6. The preferred location of the panel CT's are at the panel bus work. An acceptable alternative is to place the CT's around the service entrance conductors within the panel prior to terminating at the bus work. Verify physical space needed as required.
7. Internal connections, wiring, and ethernet cable RJ45 jack not shown. All work within meter-in-a-box not shown by UNL.
8. UNL furnished, contractor installed meter-in-a-box. Unit is approximately 12" wide by 14" tall by 8" deep. Preferred location of box physically is connected to or immediately adjacent to the service panel of the building. Mount to wall or panel with necessary hardware. Coordinate final location with UNL project manager prior to work.
9. 1" EMT conduit with two (2) CAT 5E cables from meter-in-a-box to nearest network connection point as directed by UNL project manager. Location of network connection point will vary on a project-by-project basis. Provide CAT 5E cable with factory RJ45 jacks on both ends.

SYMBOLS LEGEND

- ■ Conductor termination/connection
- ● Current transformer polarity mark
- □ Current transformer
- □ Junction box
- ▼ Panel bus bar

KEY NOTES

- Conductor termination/connection
- Current transformer (CT) polarity mark. Position towards source.
- CT furnished by UNL, installed by contractor. Position to minimize strain on secondary conductors as much as possible.
- CT shorting block integral to CT. Shown for reference only.
- Neatly train meter conductors inside panel and meter-in-a-box. Use zip ties as req'd. Ensure proper slack is provided.
- The preferred location of the panel CT's are at the panel bus work. An acceptable alternative is to place the CT's around the service entrance conductors within the panel prior to terminating at the bus work. Verify physical space needed as required.
- Internal connections, wiring, and ethernet cable RJ45 jack not shown. All work within meter-in-a-box not shown by UNL.
- UNL furnished, contractor installed meter-in-a-box. Unit is approximately 12" wide by 14" tall by 8" deep. Preferred location of box physically is connected to or immediately adjacent to the service panel of the building. Mount to wall or panel with necessary hardware. Coordinate final location with UNL project manager prior to work.
- 1" EMT conduit with two (2) CAT 5E cables from meter-in-a-box to nearest network connection point as directed by UNL project manager. Location of network connection point will vary on a project-by-project basis. Provide CAT 5E cable with factory RJ45 jacks on both ends.